Conformational Equilibrium of 4-Hydroxyand 4-Acetoxy-4-(3-aryloxy-1-propynyl)-1-(2-ethoxyethyl)piperidinium Salts in Solution

I. A. Poplavskaya, K. B. Bazhykova, and K. D. Praliev
Bekturov Institute of Chemical Science, Ministry of Education and Science of Kazakhstan Republic, ul. Ch. Valikhanova 106, Almaty, 480100 Kazakhstan

Received May 15, 2000

Abstract

Hydroxy- and 4-acetoxy-4-(3-aryloxy-1-propynyl)-1-(2-ethoxyethyl)piperidine hydroclorides in aprotic solvents give rise to equilibrium mixtures of two epimers. In the case of the acetoxy derivatives (in CDCl_{3}) the equilibrium is displaced toward the "less stable" epimer. This may be due to considerable contribution of the skewed boat conformer with intramolecular hydrogen bond.

4-(3-Aryloxy-1-propynyl)-1-(2-ethoxyethyl)-4-hydroxypiperidines I and II [1] and their acylation products were synthesized by us with the goal of obtaining new pharmacologically active substances. In the ${ }^{1} \mathrm{H}$ NMR spectra of some 4-aryloxypropynyl-4-hydroxypiperidines protons of the $-\mathrm{CH}_{2} \mathrm{C} \equiv$ appear as two singlets with an overall intensity of 2 H . In order to elucidate the reason for the observed signal doubling we analyzed the ${ }^{1} \mathrm{H}$ NMR spectra of 1-(2-ethoxy-ethyl)-4-hydroxy-4-[3-(p-methylphenoxy)-1-propynyl]piperidine (Ia), its hydrochloride Ib, 4-acetoxy-1-(2-ethoxyethyl)-4-[3-(p-methylphenoxy)-1-propynyl]piperidine hydrochloride (IIIb), and 4-acetoxy-4-[3-(p-bromophenoxy)-1-propynyl]-1-(2-ethoxyethyl)piperidine hydrochloride (IVb). Acetoxy derivatives IIIa and IVa were synthesized by acylation of hydrochlorides Ib and IIb, respectively, with acetyl chloride in acetic anhydride and, without isolation from the extract, were converted into hydrochlorides IIIb and IVb (Scheme 1).

The ${ }^{1} \mathrm{H}$ NMR parameters of compounds I-IV are summarized in Table 1. In the spectrum of base Ia the $\mathrm{CH}_{2} \mathrm{C} \equiv$ group gives a singlet at $\delta 4.68 \mathrm{ppm}$. Protons in positions 3,5 and 2, 6 of the piperidine ring each give two groups of signals belonging to axial and equatorial protons; this may be due to slow inversion of the ring. Hydrochloride Ib shows in the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ one signal only from the CH_{3} group attached to the aromatic ring, while protons of the other fragments give rise to two sets of signals with an intensity ratio of $\sim 1.2: 1$. The same compound in $\mathrm{CD}_{3} \mathrm{OD}$ is characterized by a single set of signals, but signals from the piperidine ring protons are strongly broadened (no spin-spin coupling is observed. The ${ }^{1} \mathrm{H}$ NMR spectrum of hydrochloride IIIb in CDCl_{3} contains two set of signals (intensity ratio $\sim 1: 3$) from most protons. In going to DMSO- d_{6}, the signal intensity ratio changes to $1.1: 1$ (Table 1). Like hydrochloride Ib, compound IIIb in $\mathrm{CD}_{3} \mathrm{OD}$ shows only one set of signals, and the piperidine ring

Scheme 1.

I, III, $\mathrm{R}=\mathrm{CH}_{3} ; \mathbf{I I}, \mathbf{I V}, \mathrm{R}=\mathrm{Br}$.

Table 1. ${ }^{1} \mathrm{H}$ NMR spectra of compounds Ia, Ib, IIIb, and IVb, $\delta, \operatorname{ppm}(J, \mathrm{~Hz})$

${ }^{a}$ For each compound, the upper line corresponds to epimer \mathbf{A}, and the lower, to epimer \mathbf{B}; the epimer ratio is given in parentheses.
${ }^{\mathrm{b}}$ Unresolved signal.
protons appear as broadened unresolved signals. Two sets of signals are also observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of hydrochloride $\mathbf{I V b}$ in CDCl_{3}; the intensity ratio is $\sim 1: 2$.

The presence of two sets of signals in the spectra of hydrochlorides $\mathbf{I b}, \mathbf{I I I b}$, and $\mathbf{I V b}$ can be explained by formation of two epimers \mathbf{A} and \mathbf{B} (Scheme 2) with different orientations of proton on the nitrogen atom. Casy and McErlane [2] studied the ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of isomeric 4-hydroxy-1,2,5-tri-methyl-4-phenylpiperidines and esters derived therefrom and found a double set of signals in the spectra of hydrochlorides of the β-isomer and its acetoxy analog. The authors presumed that the β-isomer
hydrochloride exists as a $1: 1$ mixture of two epimers with the following configurations of substituents in the piperidine ring: $t-1-\mathrm{Me}-c-2-\mathrm{Me}-t-5-\mathrm{Me}-r-4-\mathrm{OR}$ (C) and $c-1-\mathrm{Me}-c-2-\mathrm{Me}-t-5-\mathrm{Me}-r-4-\mathrm{OR}$ (D). In DMSO- d_{6} the epimer ratio was $9: 1$. Therefore, epimer \mathbf{C} with the equatorial hydroxy group was assumed to be more stable than epimer \mathbf{D}; the authors also noted that the conformational equilibrium of epimer \mathbf{D} is strongly contributed by conformer having equatorial phenyl group.

In the ${ }^{13} \mathrm{C}$ NMR spectra of hydrochlorides Ib and IIIb in $\mathrm{CD}_{3} \mathrm{OD}$ we observed only one set of signals. In CDCl_{3} and DMSO- d_{6} the intensity ratio of signals belonging to different epimers was the same as in the

Table 2. ${ }^{13} \mathrm{C}$ NMR spectra (δ_{C}, ppm) of 1-(2-ethoxyethyl)-4-hydroxy-4-[3-(p-methylphenoxy)-1-propynyl]piperidine hydrochloride (Ib) and 4-acetoxy-1-(2-ethoxyethyl)-4-[3-(p-methylphenoxy)-1-propynyl]piperidine hydrochloride (IIIb)

${ }^{\text {a }}$ See note ${ }^{\text {a }}$ to Table 1.
${ }^{1} \mathrm{H}$ NMR spectra (Table 2). The assignment of signals to epimers \mathbf{A} and \mathbf{B} is confirmed by the ${ }^{13} \mathrm{C}$ NMR data (monoresonance spectrum). The halfwidth of the C^{11} signal of epimer $\mathbf{A}(\sim 30 \mathrm{~Hz})$ is considerably smaller than the halfwidth of the corresponding signal of epimer $\mathbf{B}(\sim 45 \mathrm{~Hz})$. This allows us to speak with certainty that the aryloxypropynyl substituent in A occupies equatorial position [3].

It is known that conformational equilibria of 4-hydroxy-1,2,5-trimethyl-4-phenylpiperidines or their analogs, \quad-hydroxy-1,2,5-trimethyl-4-organosilylpiperidines, in aprotic solvents can involve a conformer having a structure of skewed bath which is stabilized by intramolecular hydrogen bond [4, 5]. In such structure, "heavy" substituent, e.g., phenyl or
triphenylsilyl group, occupies equatorial position [4]. In our case structure \mathbf{C} stabilized via H -bonding between the NH proton and oxygen atom of the hydroxy or acetoxy group at C^{4} is also possible. As a result, the aryloxypropynyl substituent in epimer B occupies the energetically favorable equatorial position. Probably, just this is the reason why conformer B of acetates IIIb and IVb strongly predominates in weakly polar chloroform and why the fraction of conformer B for acetate IIIb sharply decreases in going to more polar DMSO.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Mercury-300 spectrometer at 300 and 75 MHz ,

Scheme 2.

respectively. The chemical shifts were measured relative to tetramethylsilane. Compounds Ia and IIa were synthesized as described in [1]; physical properties of the corresponding hydrochlorides (Ib and IIb) are also given therein.

Hydrochlorides IIIb and IVb (general procedure). To a solution of 0.005 mol of hydrochloride $\mathbf{I b}$ or IIb in 0.05 mol of acetic anhydride we added 0.05 mol of acetyl chloride, and the mixture was kept for 24 h at $18-20^{\circ} \mathrm{C}$. Excess acetic anhydride and acetyl chloride were distilled off under reduced pressure, the residue was dissolved in water, the solution was made alkaline by adding aqueous sodium carbonate, and free base IIIa or IVa was extracted into ethyl acetate. The extract was dried over anhydrous MgSO_{4}, and a solution of HCl in ether was added to isolate hydrochloride IIIb or IVb.

4-Acetoxy-1-(2-ethoxyethyl)-4-[3-(4-methyl-phenoxy)-1-propynyl]piperidine hydrochloride (IIIb). Yield $53 \%, \mathrm{mp} 87-89^{\circ} \mathrm{C}$ (from alcohol-ether). Found, \%: C 63.70; H 7.82; Cl 8.53; N 3.71. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{ClNO}_{4}$. Calculated, \%: С 63.70; H 7.63; Cl 8.95; N 3.53.

4-Acetoxy-4-[3-(4-bromophenoxy)-1-propynyl]-1-(2-ethoxyethyl)piperidine hydrochloride (IVb). Yield 66%, mp $96-98^{\circ} \mathrm{C}$ (from alcohol-ether). Found, \%: C 52.16; H 5.92; Br 17.13; Cl 7.61; N 3.02. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{BrClNO}_{4}$. Calculated, \%: C 52.13; H 5.90; $\mathrm{Br} 17.34 ; \mathrm{Cl} 7.69$; N 3.03.

The authors are grateful to S.G. Klepikova for recording the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

REFERENCES

1. Bazhykova, K.B., Praliev, K.D., and Poplavskaya, I.A., Izv. Min. Nauki-Akad Nauk Resp. Kazakhstan, Ser. Khim., 1998, no. 3, pp. 112-120.
2. Casy, A.F. and McErlane, K.M.J., Can. J. Chem., 1973, vol. 51, no. 11, pp. 1790-1796.
3. Rozhnov, V.B., Agashkin, O.V., Sokolova, T.D., Unkovskii, B.V., and Malina, Yu.F., Zh. Org. Khim., 1985, vol. 21, no. 5, pp. 1097-1102.
4. Fomichev, A.A., Golovtsov, N.I., Rezakov, V.A., Varlamov, A.V., and Prostakov, N.S., Khim. Geterotsikl. Soedin., 1986, no. 11, pp. 1496-1502.
5. Vlasova, T.F. and Sheinker, Yu.N., Zh. Strukt. Khim., 1970, vol. 11, no. 4, pp. 640-645.
